Buod nga kabanata 22 Kabanata XXII Liwanag at Dilim Buod Magkasamang dumating si Maria at ang kanyang Tiya Isabel sa San Diego para sa pistang darating. Naging bukambibig ang pagdating ni Maria Clara sapagkat matagal na siyang hindi nakakauwi sa bayang sinilangan. Isa pa, minamahal siya ng mga kababayan dahil sa kagandahang ugali, kayumian at kagandahan. Labis siyang kinagigiliwan ng mga ito. Sa mga taga-San Diego, ang isa sa kinapapansinan ng malaking pagbabago sa kanyang ikinikilos ay si Padre Salvi. Lalong pinag-usapan si Maria Clara, nang dumating si Crisostomo Ibarra at madalas na dalawin ito. Sinabi ni Ibarra kay Maria Clara na handa na ang lahat para sa gagawin nilang piknik kinabukasan. Ikinatuwa ito ng dalaga sapagkat makakasama na naman niya sa pamamasyal ang kanyang dating mga kababata sa bayan. Ipinakiusap ni Maria Clara sa kasintahan na huwag ng isama ang kura sa lakad nila sapagkat magmula ng dumating siya sa bayan nilulukob siya ng pagkatakot sa tuwin...
A group of 4 soldiers,6 policeman, and 5 generals are to be seated in a row of 15 seats.In how many mays can they be seated given the following conditions: 1. The generals are to be seated next to each other. #2. Two of soldiers are on one end and the other two on the other end of the row. #3. The policeman are seated in a consicutive seats. Answer: Step-by-step explanation: Condition #1: Generals are to be seated next to each other. Take the 5 generals as a single unit and there will 11 factorial arrangements which will be multiplied to 5 factorial ways between the generals. 11! × 5! = (11×10×9×8×7×6×5×4×3×2×1)(5×4×3×2×1) = (39,916,800)(120) = 4,790,016,000 Condition #2: Two of soldiers are on one end and the other two on the other end of the row. Consider the 2 soldiers on one end and the 2 on the other end as a single row of 4 seats. Let 4 factorial stand for their arrangements to be multiplied by 11 factorial ways of 6 policemen and 5 generals in the remaining 11 seats. 4!...
8 people are seated around a table at a political function.In how many ways can they seat if the president and secretary must always be beside each other? Answer: 10,080 ways Step-by-step explanation: Take the president and secretary as a single unit and there will be 7 factorial arrangements around the table which will be multiplied to 2 factorial ways between the president and secretary. 7! × 2! = (7×6×5×4×3×2×1)(2×1) = (5,040)(2) = 10,080
Comments
Post a Comment