A group of 4 soldiers,6 policeman, and 5 generals are to be seated in a row of 15 seats.In how many mays can they be seated given the following conditions: 1. The generals are to be seated next to each other. #2. Two of soldiers are on one end and the other two on the other end of the row. #3. The policeman are seated in a consicutive seats. Answer: Step-by-step explanation: Condition #1: Generals are to be seated next to each other. Take the 5 generals as a single unit and there will 11 factorial arrangements which will be multiplied to 5 factorial ways between the generals. 11! × 5! = (11×10×9×8×7×6×5×4×3×2×1)(5×4×3×2×1) = (39,916,800)(120) = 4,790,016,000 Condition #2: Two of soldiers are on one end and the other two on the other end of the row. Consider the 2 soldiers on one end and the 2 on the other end as a single row of 4 seats. Let 4 factorial stand for their arrangements to be multiplied by 11 factorial ways of 6 policemen and 5 generals in the remaining 11 seats. 4!